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Abstract

The formulation of a rigid body in relativistic quantum mechanics is studied.
Departing from an alternate approach at the relativistic classical level, the
corresponding Klein–Gordon and Dirac operators for the rigid body are
obtained in covariant form. The resulting wave equations are shown to be
consistent, by construction, with earlier definitions of a relativistic rigid body
by Aldinger et al (1983 Phys. Rev. D 28 3020). Wavefunctions and spectra
for both cases are obtained explicitly, including the Dirac gyroscope with
asymmetries.

PACS numbers: 03.65.Pm, 03.30.+p, 03.65.Ge

1. Introduction

The study of relativistic rigid bodies in quantum mechanics has been explored extensively in
previous works, particularly in [1]. Relativistic quantum rigid bodies (RQRB) are defined
through a set of three fundamental properties: (1) elementary limit, (2) consistent classical
limit and (3) consistent non-relativistic limit. The second requirement, however, leaves some
freedom to what a relativistic rigid body should be at the classical level. See, for instance
[2, 3] for some definitions of rotating objects. The interest of the present work is to formulate
relativistic wave equations describing rigid bodies of spins 0, 1

2 taking advantage of this point
(here, spin should not be confused with total angular momentum, sometimes referred to as
total spin). Since the focus is centered on rigid bodies at subatomic scales, general relativity
effects will be neglected.

A construction of simple wave equations describing RQRB is persuited. To achieve this,
we find it convenient to formulate classical relativistic gyroscopes as multiparticle systems.
Moreover, a manifestly Lorentz invariant construction is possible when such particles interact
with each other through Lorentz covariant gauge potentials. Any effective realization of a rigid
body in nature must be through such interactions, though special conditions are needed for this
to happen. Our alternate approach to a classical rigid body will be established by means of an
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analogy between non-relativistic and relativistic expressions for the energy and the squared
energy, respectively. This will ensure an appropriate non-relativistic limit in our treatment. It
must be mentioned that constructions of relativistic wave equations for many particles have
been given before, for example, in [4, 5]. In connection with relativistic classical mechanics,
the problems of orbit reconstruction, one-time description, separability of rotational kinematics
and appropriate definitions of center of mass in many body relativistic systems have been
treated extensively in [6, 7]. The study of these complex problems entails special definitions
and generalizations of non-relativistic concepts (e.g. dynamical body frames, canonical spin
bases, canonical internal center of mass, etc) which, however, are not used in the present
work. The N-body approach presented here uses gauge interactions as an instrument to ensure
Lorentz covariance. Moreover, our covariant definition of center of mass (indicated later in the
text) is motivated by its properties when replaced in quadratic forms of particles’ coordinates
and momenta. Although important results have been achieved in the references cited above,
we may instead use the strategy of identifying non-relativistic expressions related to rigid
bodies through manipulations within the relativistic framework.

As a motivation for the present work, it should be mentioned that (non-relativistic)
rotational behavior is highly important in the study of molecular [8] and nuclear spectra [9].
For subnuclear structures arising in the realm of high-energy physics, a relativistic treatment
should be useful. Hadronic spectroscopy in the absence of vibrational modes has been explored
before in this context [10] and results of the present paper may be applied to this ground as
well. Alternatively, there has been interest in the study of kicked rotators and their implications
to quantum chaos [11], reaching recently the relativistic realm in [12].

This paper is structured as follows. In section 2, the classical relativistic treatment is
established through a system of interacting particles. It includes a suitable definition for a
relativistic inertia tensor. In section 3, the corresponding Klein–Gordon operator is written.
Wavefunctions and energies are obtained. Section 4 shows the procedure for obtaining a
Dirac equation for RQRB. Here, the inertia tensor with a real diagonal inverse square root
is considered. Wavefunctions and energies for the symmetric case are written explicitly.
Section 5 contains yet another way of writing the Dirac operator with a non-Abelian inverse
square root for the inertia tensor, though moments of inertia remain the same as their classical
counterparts. Through this treatment, analytical expressions for wavefunctions and energies
are given in simple form for the case of asymmetric spin–orbit coupling. Section 6 contains a
brief conclusion.

2. An alternative approach to a relativistic rigid body in classical mechanics

In the formulation of the free rigid body problem, one could follow a path well depicted in
classical textbooks [13], by considering the system to comprise many particles obeying the
holonomic constraints of fixed distances between each pair of them. The velocities of the
constituents in any frame of reference can be written in terms of a displacement velocity and
an angular velocity which are the same for all points. Such a treatment, when employed in
the non-relativistic realm, leads to a kinetic energy (and Hamiltonian for the free case) in the
center of mass of the form

H = 1

2

3∑
i=1

I−1
i L2

i = 1

2

3∑
i=1

Ii�
2
i , (1)

where �i are the components of the angular velocity, Li are the components of the total angular
momentum in the body-fixed frame and Ii are the moments of inertia. In the special theory
of relativity, however, the form of the kinetic energy allows neither a quadratic term in the
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velocities (Lorentz factors are present through the relativistic mass) nor a simple decomposition
in terms of displacement and angular velocity with respect to some origin. Even in the case
when such an origin is chosen as the center of mass and at rest, a definition of inertia tensor
is possible only when the defined object depends on the velocity of each particle by means of
the corresponding Lorentz factors. The general description becomes rather involved with no
parallel to the simpler form (1) unless the non-relativistic limit is taken. It should be noted
that despite this, energy and angular momentum are constants of the motion when viewed in
the frozen center of mass—a one-time description is possible in this frame of reference even
in the quantum domain (see [14]) and rotational invariance also holds.

With this in mind, we start our approach with a system of N particles (though this number
is irrelevant) interacting through gauge potentials coming from a Lorentz covariant theory.
Ultimately, it is through these that a rigid body is effectively realized in nature. Let r(l)

μ be
the 4-vector representing the coordinates of the lth particle, p(l)

μ its canonically conjugate
4-momentum, A(l)

μ the gauge potential felt by the particle due to other components of the
system, ml its rest mass and π(l)

μ the corresponding mechanical 4-momentum such that

π(l)
μ =

(
mlc√

1 − (v(l)/c)2

)
dr(l)

μ

dr(l)0

= p(l)
μ − A(l)

μ (2)

with (v(l))2 = c2
(
dr(l)

/
dr

(l)
0

)2
. The energy of the particle can be written as

E = cp(l)0 =
√

c2(p(l) − A(l))2 + m2
l c

4 + cA(l)0 (3)

which is equivalent to the Lorentz invariant expression

π(l)
μ π(l)μ = −(mlc)

2, (4)

where the sum convention over repeated greek indices is adopted. Considering a transformation
to the center of mass and relative coordinates, i.e. the Jacobi transformation [15], we write the
resulting set of coordinates and their conjugate momenta denoted by a dot above in the form

ṙ (N)
μ ≡ Rμ =

N∑
i=1

√
mi

NM
r(i)
μ , center of mass

ṙ (l)
μ = 1√

l(l + 1)

l∑
i=1

(√
mi

M
r(i)
μ −

√
ml+1

M
r(l+1)
μ

)
, relative coordinates

ṗ(N)
μ ≡ Pμ =

N∑
i=1

√
M

Nmi

p(i)
μ , center-of-mass momentum

ṗ(l)
μ = 1√

l(l + 1)

l∑
i=1

(√
M

mi

p(i)
μ −

√
M

ml+1
p(l+1)

μ

)
, relative momenta

π̇ (l)
μ ≡ ṗ(l)

μ − Ȧ(l)
μ , Ȧ(l)

μ = 1√
l(l + 1)

l∑
i=1

(√
M

mi

A(i)
μ −

√
M

ml+1
A(l+1)

μ

)
,

l = 1, . . . , N − 1,

(5)

where M is the total rest mass. Note that the index l above distinguishes Jacobi coordinates and
is not related to particles. Since we are dealing with a free RQRB, there is no need to define
a mechanical momentum for the center of mass: despite the transformed vector potential for
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l = N could be non-vanishing, it is necessarily independent of Rμ and can be gauged away.
Multiplying relation (4) by M/ml and summing over l we obtain

N∑
l=1

M

ml

π(l)
μ π(l)μ = −(Mc)2 (6)

or

PμP μ +
N−1∑
l=1

π̇ (l)
μ π̇ (l)μ = −(Mc)2 (7)

which follows from the fact that Jacobi coordinates come from a rotation in particle
space. Furthermore, we can separate spacelike and timelike terms in the form π2

S ≡∑N−1
l=1 π̇

(l)
j π̇ (l)j , π2

T ≡∑N−1
l=1 π̇

(l)
0 π̇ (l)0 such that

PμP μ + π2
S + π2

T = −(Mc)2 (8)

and the energy on the center of mass (P i = 0) can be cast as a function of Jacobi mechanical
momenta, i.e.

cP 0 =
√

c2π2
S + c2π2

T + M2c4. (9)

Alternatively, one could solve for p
(l)
0 in (4), multiply by

√
M/ml and sum over l to obtain the

same energy in terms of particle coordinates and mechanical momenta

cP 0 =
N∑

l=1

√
M/ml

(√
c2π

(l)
j π(l)j + m2

l c
4 + cA(l)0). (10)

Now we turn to the crucial point. Let V =∑N
l=1 A(l)0. Had we formulated our problem in the

non-relativistic domain, a Hamiltonian of the form

H =
N∑

l=1

π
(l)
j π(l)j

2ml

+ V = π2
S

2M
+ V (11)

would have appeared. When vector potentials are responsible for an effective realization of a
rigid body, Hamiltonians (1) and (11) can be identified. This, together with the second equality
in (11), allows us to write π2

S in terms of Li, Ii and V . When the resulting π2
S is replaced in

(8) we get

−(P 0)2 + M

3∑
i=1

I−1
i L2

i + π2
T − 2MV = −(Mc)2 (12)

and through this treatment we have made appear the familiar quadratic form in the angular
momentum. The timelike part π2

T is thus far unknown. In order to deal with this term, we may
use the functional form of (12) together with the conservation of energy and angular momentum
at the center of mass coming from the invariance properties of (10). Conservation laws applied
to (12) imply π2

T − 2MV = const ≡ P2, which may depend on angular momentum and the
body’s rest energy—there are no more independent conserved quantities available in principle.
The non-relativistic limit Mc2 → ∞ and the full relativistic limit Mc2 → 0 are helpful at this
point. The first limit applied in (12) leads to

cP 0 ≈ Mc2 +
1

2

3∑
i=1

I−1
i L2

i +
P2

2M
. (13)

4



J. Phys. A: Math. Theor. 42 (2009) 015209 E Sadurnı́

However, at order 1/M we expect the energy to be given exclusively by the first two terms
on the rhs of (13). Thus P2 ∼ 1/M or higher inverse powers. Using this result, the second
limit would lead to an infinite energy in the absence of rest mass, which makes no sense for a
system of interacting particles. Therefore, we must choose P2 = 0 to meet both requirements
and the energy is then given by

E =
√√√√Mc2

3∑
i=1

I−1
i L2

i + (Mc2)2. (14)

It should be emphasized that Ii are moments of inertia at the center of mass which coincide
with the usual non-relativistic definitions [13].

2.1. Classical equation in the Lorentz invariant form

Since we want (14) to be manifestly Lorentz invariant, we proceed to give a covariant definition
for the inertia tensor. First, we need a 4 × 4 symmetric tensor which is diagonal in some basis.
Moreover, (14) indicates that it must reduce to

Iij =
N∑

l=1

ml

(
r

(l)
i r

(l)
j − δij (r

(l))2) (15)

at the center of mass, while in other frames of reference differing by a constant velocity, Iij

should account for a distortion of the body in the direction of a boost. Thus we define

uμ = Pμ√−P νPν

r
(l)
⊥μ = r(l)

μ − uμ

(
uνr(l)

ν

)
Iμν =

N∑
l=1

ml

(
r

(l)
⊥μr

(l)
⊥ν − ημνr

(l)
⊥λr

(l)λ
⊥
)
,

(16)

where η denotes the metric tensor. For later use we also define the covariant object Īμν such
that Īμρ Ī

ρ
ν = (I−1)μν .

If (12) is written as a Lorentz scalar in the appealing form

PμP μ + BμBμ + (Mc)2 = (P + B)μ(P + B)μ + (Mc)2 = 0 (17)

then it will be necessary to find Bμ such that, at the center of mass, the term BμBμ reduces to
the kinetic energy of the rigid body and BμP μ vanishes for any frame of reference. For this
we find it useful to define an analog of the Pauli–Lubanski vector [16] for a system of particles
in terms of the angular momentum antisymmetric tensor, i.e.

Mμν =
N∑

l=1

r(l)
μ p(l)

ν − μ ↔ ν =
N∑

l=1

ṙ (l)
μ ṗ(l)

ν − μ ↔ ν

Wμ = −1

2
εμνσρP

νMσρ,

(18)

where ε is the totally antisymmetric symbol, ε0123 = 1. The sum in the angular momentum
may not include the Nth term, since it vanishes when replaced in the expression for W . With
these definitions, it is straightforward to show that

Bμ =
√

M

−P νPν

Ī ρ
μWρ =

√
M

2
ενσλρu

νMσλĪ ρ
μ (19)
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does the desired job, as long as Li = 1
2εijkLjk with Ljk the body fixed angular momentum i.e.

when Ijk is diagonal. Thus (17) and (19) are the sought invariant expressions for the classical
RRB.

3. The Klein–Gordon gyroscope

By following the canonical quantization prescription, namely p(l)
μ → −ih̄∂(l)

μ , it results very
simple to promote (17) and (19) to operator form. Nevertheless, moments of inertia remain as
parameters, not operators. We thus have the equation

[(P + B)μ(P + B)μ + (Mc)2]φ = 0, (20)

where φ = φ
(
r(l)
μ

)
. In terms of the D’Alembertian 
 with respect to Rμ = (ct, R) we have

[−h̄2
 + BμBμ + (Mc)2]φ = 0. (21)

To compute the energies and wavefunctions at the center of mass, we replace uμ = (−1, 0, 0, 0)

to get [
Mc2

3∑
i=1

I−1
i L2

i + M2c4 + h̄2 ∂2

∂t2

]
φ = 0 (22)

or its stationary version[
Mc2

3∑
i=1

I−1
i L2

i

]
φ = (E2 − M2c4)φ. (23)

The eigenvalues of the operator in (23) determine the energy and can be computed for the
general (asymmetric) case by means of algebraic methods [17] or direct diagonalization using
appropriate states [18]. In fact, it is suitable to use kets |lm〉 such that m indicates the angular
momentum projection in the body frame (in the laboratory frame such a number is always
conserved, but it is not customary to include it in the notation), while l is the total angular
momentum number in the body frame. It is a conserved quantity, since L2 commutes with the
operator in (23). Restricting ourselves to the symmetric case I1 = I2, the eigenvalues are

Elm = ±
√

Mc2h̄2
[
I−1

1 l(l + 1) +
(
I−1

3 − I−1
1

)
m2
]

+ M2c4 (24)

and wavefunctions are those of the non-relativistic problem. Here we could equally follow the
approach in [8], where the asymmetry is treated by three restricted parameters given in terms
of the moments of inertia to obtain analytical solutions using the same states |lm〉.

Finally, it must be mentioned that requirements (1), (2) and (3) in [1] are fulfilled by
construction. Specifically, (1) is reached by setting N = 1 in (20), for which Bμ = 0 from its
definition and Pμ becomes the single particle momentum. Requirement (2) is obviously met,
since (17) and (19) were our points of departure for quantizing the system. Equation (13) with
P2 = 0 shows (3).

4. The Dirac gyroscope

The need for a relativistic equation which is linear in the generator of time translations may
lead us to a generalization of the Dirac equation motivated by (20). In such a case, an intrinsic
spin would appear as a consequence of the corresponding Clifford algebra which may be
related to the spin of individual particles comprised of the RQRB. For requirement (1) to be
fulfilled, the spin of the particles should not contribute to the energy, as is the case for a single

6
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particle obeying the Dirac equation. Thus, a Dirac equation which is linear in Pμ and Bμ can
be proposed in the form

[γμ(P μ + Bμ) + Mc]ψ = 0, (25)

where γμ are Dirac matrices [19] and Bμ is taken as in (19), i.e. without spin contribution.
Equation (25) is motivated by what would be the square root of (20). We shall refer to it as
the Dirac gyroscope. At the center of mass, (25) possesses a Hamiltonian form given by

Hψ = [
√

Mcα · (ĪL) + βMc2]ψ = ih̄
∂ψ

∂t
(26)

with αi = γ 0γi = βγi and Ī = diag
{
I−1/2
1 , I−1/2

2 , I−1/2
3

}
in the frame of principal axes.

Squaring (26) and using the relations

Si = h̄

2
σi ⊗ 12, αiαj = 14δij +

2i

h̄
εijkSk

LiLj = 1

2
{Li, Lj } +

ih̄

2
εijkLk

(27)

yields [
Mc2

3∑
i=1

I−1
i L2

i − Mc2
3∑

i=1

I−1
i LiSi + M2c4

]
ψ = −h̄2 ∂2ψ

∂t2
(28)

which resembles closely (22), but with a spin–orbit coupling term containing asymmetries
through Ī. Here, the situation is quite similar to what ocurrs in the case of the Dirac oscillator
[20] when its square energy is computed. The Dirac Hamiltonian (26) describes a RQRB
with an extra term appearing in phenomenological Hamiltonians for mass operators in nuclear
[21] and hadron physics [22]. Requirement 3 is fulfilled again as long as we allow our non-
relativistic gyroscope to contain spin–orbit coupling. Requirements (1) and (2) are met by the
same reasons exposed for the Klein–Gordon gyroscope. In the classical limit, the spin–orbit
term disappears in (28).

Now we turn to the solutions of (26) in its stationary version, which can be discussed
through (28) or by using a more instructive approach. We follow the latter and present the
spherical (Ii = I ) and symmetrical (I1 = I2) cases separately, although one reduces to the
other.

4.1. The spherical case

First, it should be noted that the asymmetric case is such that J ≡ L + S is not a conserved
quantity, since it does not stand for the total angular momentum. Instead, it is the sum
of the laboratory spin and the body-fixed orbital angular momentum. Since our problem
is rotationally invariant in general, states are determined by the total angular momentum
in the laboratory frame and its projection in the quantization axis. However, we omit the
state dependence on such quantum numbers as we did for the laboratory angular momentum
projection in the Klein–Gordon case (in fact, this applies even for the non-relativistic case
[17]). States labeled |lm〉 will be used, but as can be noted, J does commute with H in
the spherical case and we may use states

∣∣j(l, 1
2

)
mj

〉
to find the spectrum. The spherical

Hamiltonian reduces to

H = 2c

h̄

√
M

I
β1(L · S) + β3Mc2 = c

h̄

√
M

I
β1

(
J 2 − L2 − 3h̄2

4

)
+ β3Mc2, (29)

where βi = 12 ⊗ σi , with the properties [βi, Sj ] = [βi, Lj ] = 0, {βi, βj } = 14δij . Because of
this, Dirac states for this system can be factorized in the form

∣∣j(l, 1
2

)
mj

〉⊗ χ , with χ a Pauli

7
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spinor whose up and down components stand for the big and small parts of the wavefunctions.
Therefore, solutions read

ψjlmj ± =
∣∣∣∣j
(

l,
1

2

)
mj

〉
⊗ χ±

Ejl,± = ±
√

h̄2Mc2

I

(
j (j + 1) − l(l + 1) − 3

4

)2

+ M2c4,

(30)

where j = l ± 1
2 . Spinor χ± obeys the algebraic equation[
ch̄

√
M

I

(
j (j + 1) − l(l + 1) − 3

4

)
σ1 + Mc2σ3

]
χ± = Ejl,±χ± (31)

which can be solved in terms of the canonical basis |±〉, i.e.

χ± =
√

Ejl,± + Mc2

2Ejl,±
|+〉 +

√
Ejl,± − Mc2

2Ejl,±
|−〉. (32)

4.2. The Symmetric case

Here we define c1 ≡ (c/h̄)
√

M/I1, c3 ≡ (2c/h̄)
√

M/I3 and take S±, L± as the standard
ladder operators for the spin and orbital angular momentum. Hamiltonian (26) is written as

H = β1[c1(S+L− + S−L+) + c3S3L3] + β3Mc2 ≡ β1K + β3Mc2. (33)

Clearly, L2 and J3 are commuting integrals of the motion. Eigenstates are again separated in
the form ψ = φ ⊗ χ , where φ is labeled by mj (the z projection of J) and l. Again, spinor χ

contains big and small components of the wavefunction. Solutions are obtained by replacing
these states in the stationary Schrödinger equation with Hamiltonian (33) and solving a 2 × 2
secular equation. The two resulting roots will be labeled i = 1, 2. Results for the operator K
are

Kφi
l,mj

= F i
lmj

φi
l,mj

, i = 1, 2

φi
l,mj

=
√√√√2F i

lmj
+ h̄2c3

(
mj + 1

2

)
4F i

lmj
+ h̄2c3

∣∣∣∣l, mj − 1

2

〉 ∣∣∣∣12
〉

+

√√√√2F i
lmj

− h̄2c3
(
mj − 1

2

)
4F i

lmj
+ h̄2c3

∣∣∣∣l, mj +
1

2

〉 ∣∣∣∣− 1

2

〉

F i
lmj

= −h̄2

4

[
c3 + (−)i

√
c2

3 + 4c2
1l(l + 1) + 4

(
c2

1 − c2
3

)(
m2

j − 1/4
)]

(34)

while the energy spectrum and eigenstates result in

Hψi
l,mj ,± = Ei

lmj ,±ψi
l,mj ,±

ψi
l,mj ,± = φi

l,mj
⊗ χ±

Ei
lmj ,± = ±

√(
F i

lmj

)2
+ M2c4

χ± =
√√√√Ei

lmj ,± + Mc2

2Ei
lmj ,±

|+〉 +

√√√√Ei
lmj ,± − Mc2

2Ei
lmj ,±

|−〉.

(35)
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In the c1 = c3 limit (spherical case), we see that the number (−)i is related to the choice
j = l + (−)i 1

2 . It must be mentioned that the asymmetric case cannot be solved through these
techniques alone, but demands a crude matrix diagonalization. However, there remains the
question of whether a Dirac gyroscope governed by three independent parameters possesses
an analitically solvable spectrum. This fact takes us to the following section.

5. The symmetric Dirac gyroscope with non-Abelian parameters

Now we address the problem of formulating a Dirac gyroscope with three independent
parameters whose stationary equation allows analytical solutions. We do not expect the
asymmetric problem to be solvable in a simple form, but we can propose a symmetric Dirac
gyroscope with asymmetric spin–orbit coupling. In defining a Dirac operator like (25), there
is certain freedom in choosing the square root of the inverse inertia tensor. In fact, if a
kinetic term of the form (ĪL)†(ĪL) = L · (I−1L) is sought in the second-order equation (28),
the relation Ī† Ī = I−1 can be fulfilled in many ways. It must be noted, however, that the
construction of the Dirac operator requires the tensor Ī to be independent of S and L. Thus,
a dependence on βi remains as the only possibility, since it is the only non-Abelian structure
left which commutes with L and S. By the relations written immediately after (29), we see
that the β’s correspond to an independent observable analogous to spin but related to big and
small components of bispinors (we have used this fact in the past sections). We can choose
the tensor Ī up to rotations as

Ī = β1β · v̂I−1/2 = β1β · v̂

⎛
⎜⎝I

−1/2
1 0 0

0 I
−1/2
1 0

0 0 I
−1/2
3

⎞
⎟⎠ , (36)

where v̂ is a unit vector and Ī† Ī = I−1 can easily be verified. Replacing it in Hamiltonian (26)
we get the simple expression

H = β · v̂[c1(S+L− + S−L+) + c3S3L3] + β3Mc2 ≡ β · v̂K + β3Mc2, (37)

where c1, c3 are taken as before. The operator K commutes with H and eigenstates are similar
to those obtained in the last section. Results are again those in (34) for the kinetic energy
operator, but energies and states satisfy

Hψi
l,mj ,± = Ei

lmj ,±ψi
l,mj ,±

ψi
l,mj ,± = φi

l,mj
⊗ χ±

Ei
lmj ,± = ±

√(
F i

lmj

)2
+ M2c4 + 2v3F

i
lmj

Mc2

χ± = 1

Ei
lmj ,±

[
σ · v̂F i

lmj
+ σ3Mc2]|±〉.

(38)

We can see that the spectrum is controlled by three independent parameters c1, c3, v3.
The third parameter plays the role of a translation of kinetic energy and a dilatation of the rest
mass. To obtain a Lorentz invariant version of (37) it suffices to replace v̂ by a Lorentz vector
vμ projected orthogonally with respect to uμ, i.e. v⊥μ = vμ − uμ(uνvν). Thus, if β0 = 14, the
replacement Īμν → βρv⊥ρ Īμν in (25) does the required job.

6. Conclusions

A Lorentz invariant description of a classical relativistic body has been given in terms of the
non-relativistic Hamiltonian (1). With this, a Klein–Gordon equation for a RQRB has been
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obtained and solved. The extension to a Dirac equation has also been achieved, including
the explicit forms of energies and eigenfunctions at the center of mass. To the author’s
knowledge, the approach to a RQRB presented here is entirely new, as well as the resulting
equations and spectra. This work is expected to help in the study of relativistic kicked rotators
of a richier structure than those already considered [12]. Detailed analysis of the spectrum
and its application to hadronic spectroscopy is the subject of future work.
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Institute of Physics Publishing) p 403

10

http://dx.doi.org/10.1103/PhysRevD.28.3020
http://dx.doi.org/10.1103/PhysRevD.28.3032
http://dx.doi.org/10.1103/PhysRevD.29.2828
http://dx.doi.org/10.1103/PhysRevD.32.1503
http://dx.doi.org/10.1016/0003-4916(74)90046-3
http://dx.doi.org/10.1103/PhysRevD.28.1308
http://dx.doi.org/10.1103/PhysRevD.33.3401
http://www.arxiv.org/abs/0801.4538v1
http://dx.doi.org/10.1142/S0217751X98001426
http://dx.doi.org/10.1063/1.1435424
http://dx.doi.org/10.1063/1.1897841
http://dx.doi.org/10.1103/RevModPhys.69.213
http://dx.doi.org/10.1016/S0166-1280(99)00236-5
http://dx.doi.org/10.1088/0034-4885/65/7/202
http://dx.doi.org/10.1007/BF02755270
http://dx.doi.org/10.1103/PhysRevA.71.043803
http://dx.doi.org/10.1238/Physica.Regular.068a00215
http://www.arxiv.org/abs/hep-ph/0502028
http://dx.doi.org/10.1006/aphy.1999.5931
http://dx.doi.org/10.1103/PhysRev.34.243
http://dx.doi.org/10.1088/0305-4470/22/17/002

	1. Introduction
	2. An alternative approach to a relativistic rigid body in classical mechanics
	2.1. Classical equation in the Lorentz invariant form

	3. The Klein--Gordon gyroscope
	4. The Dirac gyroscope
	4.1. The spherical case
	4.2. The Symmetric case

	5. The symmetric Dirac gyroscope with non-Abelian parameters
	6. Conclusions
	Acknowledgments
	References

